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Abstract. The lattice gas problem with third nearest neighbour exclusion on a square lattice 
is shown to be equivalent to the problem of placing hard cross-shaped pentamers on the 
square lattice and the existence of a phase transition is proved by means of the Peierls 
argument. 

1. Introduction 

Peierls’ argument has recently been applied successfully to prove phase transitions for a 
large class of repulsive lattice gas systems. A general treatment of Peierls’ argument can 
be found in the review article by Griffiths (1972). Heilmann and Praestgaard (1973) have 
given a thorough discussion of the implications for repulsive lattice gases. The main 
feature of the argument is to prove that at sufficiently high fugacity the system will exist 
in several states (ie Gibbs’ states, see Dobrushin 1968) which differ from each other only 
by spatial symmetry transformations. This is done by proving that if one fixes the 
boundary conditions of the system appropriately, one forces the whole system into a 
state which has a lower spatial symmetry than the model as such. At sufficiently low 
fugacity the system will always exist in a gas phase where the state of the system is inde- 
pendent of the boundary condition and has the full symmetry of the model. Consequently, 
one has a phase transition somewhere in between. 

When one wants to apply Peierls’ argument two kinds of problems arise. Some of 
these may be trivially solvable for some models. 

Firstly one defines the pure states; a pure state is essentially a classification of the 
possible local structures, in the following we shall just call them states as no confusion 
seems possible. The local structure is given by the configuration of a volume element. 
In the lattice gas the volume element is often a single vertex. In the present case, however, 
it will also be necessary to include the configurations of the neighbouring vertices. 

For a given configuration of the system each volume element is uniquely determined 
as belonging to a definite state (or possibly the contour between different states) and the 
configuration can now be associated with a system of contours separating the regions 
belonging to different states ; knowledge of the system of contours should uniquely 
determine the configuration. 

Secondly, one has to prove that the occurrence of a contour is unlikely. To do this 
one compares configurations with the contour in question to the configuration without 
the contour. This comparison is done with the aid of symmetry operations which inter- 
change the local structures while mapping the model onto itself. The use of translation 
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as a symmetry operation was introduced by Dobrushin (1965); the applicability of reflec- 
tion, rotation and inversion as symmetry operations has recently been established by 
Heilmann (1974). 

For the nearest neighbour exclusion on the square lattice, which divides into two 
sublattices A and B, the definition of local structures and contours is straightforward. 
A vertex in the A sublattice has A structure, when occupied, and B structure, when 
empty, and vice versa for a vertex in the B sublattice. Contours are drawn through the 
edges which separate vertices of opposite structure. When one has three sublattices as 
on the triangular lattice, the structure of an occupied vertex is still uniquely determined, 
while the structure of an empty vertex only is defined through the neighbouring occupied 
vertices and may not be uniquely given. This problem was resolved (Heilmann 1974) by 
including such vertices in the contour. 

In this paper we consider the problem of third nearest neighbour exclusion on the 
square lattice as an example of a system where not even the structure of an occupied 
vertex is uniquely given without considering the configuration of the neighbouring 
vertices. Numerical calculations (Bellemans and Nigam 1967) indicate that the system has 
a phase transition. 

2. The model 

The model is the lattice gas model, the lattice is the square lattice and the particles are 
hard-core particles with third nearest neighbour exclusion, a configuration is shown 
in figure 1. The model also describes a system of hard pentamers on the square lattice 
as shown in figure 2, and in the following we shall refer to the model in terms of the pen- 
tamer system. 

In the close-packed configuration all lattice points are covered by the pentamers and 
a region with one state is a region with close-packed pentamers. The structures of five 
different states are generated by translating one such ordered state on the square lattice 
by one unit. It is not possible to generate all the different states from each other by 
translation. In figure 3 two states are shown for which this is not the case. They can, 
however, be transformed to each other by a reflection in a diagonal line on the square 
lattice, a reflection that leaves the lattice invariant. The ten different states generated 
from each other by translation and reflection exhaust the possibilities. 

l l l l l l l l ~ l l I l l l l l l / l l  , .  

Figure 1. The configuration of a lattice gas with third nearest neighbour exclusion. 
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Figure 2. Hard pentamers on a square lattice in a configuration equivalent to the lattice gas 
configuration of figure 1. 

Figure 3. Two states that cannot be generated from each other by a translation on the 
lattice. 

Consider the boundary of the system to have one fixed structure which we shall call 
the A structure. A different structure inside the boundary will, in general, be separated 
from the A structure by lattice points not covered by any particles. There is, however, 
the possibility that a particle can belong to two different structures as exemplified by the 
shaded pentamer in figure 4. The empty lattice points specify the configuration com- 
pletely and a contour is now defined by tracing a curve through the empty points, a 
unit length of contour being a line segment between two adjacent empty points. In 
figure 5 the contour is seen to pass through a particle belonging to two structures; since 
such a particle can be considered to be part of the contour we do not need to assign it to a 
definite structure. 

The contour separating the outer A structure from the structures inside is not a 
simple polygon ; where different structures meet there is a possibility of branch points as 
seen in figure 5 .  The elimination of such a contour is described in detail in Heilmann and 
Praestgaard (1973). 

The number of ways of continuing the contour is limited by the fact that adjacent 
empty points can only be separated by a certain distance, otherwise they will not be 
adjacent points, ie either there is an empty point between them or the space between 
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Figure 4. A configuration with a pentamer (shaded) belonging to two different states. 

Figure 5. A contour with branch points which passes through a pentamer (shaded) belonging 
to two states. 

them will be occupied with pentamers belonging to one structure. The possible contour 
segments in the positive quadrant are shown in figure 6. 

The number of ways of drawing one contour segment is thus at most 35, and the 
number of ways of continuing a contour is thus bounded by 

q = 1+35+(325) 

where the possibilities of contour termination and branching are included. 
The general theory behind the elimination of a contour using reflection symmetry is 

described in Heilmann (1974), where it is shown that Peierls’ argument applies if the free 
energy of a contour segment can be made larger than a constant fo : 

where E is the lower bound on the energy of a contour segment. In the present case, 
where each particle covers five lattice points, we have E = p / 5 ,  where p is the chemical 
potential of the particles. 

We shall not go into any details about the rather complicated derivation leading to 
this result. However, it is necessary to consider one point. An important step is to 
transform the contours inside a region separately, ie reflect them in different lines of 
reflection. This might cause contours to cross each other after they have been reflected 
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Figure 6. The possible contour segments in the positive quadrant. 

in which case they are reflected in the same reflection line. In order to keep track of this, 
one has to keep track of the crossing points, and in this it was tacitly assumed that there 
was only one possible crossing point per unit step of contour. In the present case there 
are three possible crossing points for some of the contour segments. Rather than modi- 
fying the lengthy proof to include the possibilities of more than one crossing point, 
we shall just redefine a contour segment to be one third of the length considered so far. 
With the new definition of a segment, there can only be one crossing point and Peierls’ 
argument will thus show a phase transition, if the inequality 

is fulfilled. We thus conclude that the system of hard pentamers on a square lattice has a 
phase transition, since it exists in an ordered phase for 
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